GO Software Group
- Progress and Next 5 years

working more efficiently for you
Theme

• 2000-2010
 - “wild west”
 - home-grown formats and tools
 - development of de-novo software

• 2010-2020
 - mature phase
 - 3rd party tools
 - Software group as integrators
 - Increased Automation
Outline

• **Support for Ontology Development**
 – TermGenie
 – Leverage OWL tools

• **Annotation and Reference Genome Support**
 – QC and Rule Engine
 – Expressivity and automatic integration
 – Annotation Tools

• **Web Presence**
 – AmiGO and QuickGO
 – Galaxy

• **Infrastructure and GO Database**
 – Database Overhaul
 – Virtualization and the cloud
Ontology Development

First Decade
- Large monolithic, manually constructed graph
- Sourceforge workflow
- All ontology changes through editor + OboEdit

Second Decade
- Modular ontology construction
 - ‘outsourcing’ to OBO
 - MIREOTing of terms
 - automated classification
- Instant Compositional Terms for Annotators
 - TermGenie
- Reasoner-based QC
Current progress: Ont-Dev

• TermGenie
• Support for MIREOT/isa closure in OboEdit
• More QC checks
Infrastructural changes required to support ontology development

• We have too much dependence on home grown software
 – reasoning, ontology processing and editing
 – poor bus ratio
• Most useful 3rd party ontology development tools assume OWL
 – We will make obo-format1.4 formally correspond to a subset of OWL
 • Write reliable converters
 – Migrate all code to OWL API
Workflow
SWUG Plan: Ont-Dev

- Freeze OE new features
 - maintenance mode
- Prioritize obo/owl conversion
 - allows people to use whichever tool is most appropriate
- Make OE3 a plugin for Protege4
 - port visualization, verification checks
- Migrate existing ont support tools to OWLAPI
 - TermGenie
 - OE Reasoner
 - Ontology QC reports
Annotation support

- Automated QC and inference
- Automatic integration with external databases
- Support increased expressivity
- Annotation Tools
Automatic QC and inference

• Existing checks and inferences:
 – Taxon constraints
 • paper accepted for BMC bioinformatics
 – Materializing F->P annotations
 – Ad-hoc SQL queries and scripts

• Plan
 – Unified **Rule Engine**
 – Driven from central rules file
 – Implemented using OWL API
Automatic integration
Activating integration using computable definitions – **pathway databases**

[Term]
id: GO:0015871
name: choline transport
intersection_of: GO:0006810 ! transport
intersection_of: results_in_transport_of CHEBI:15354 ! choline

Implementation: standard reasoning techniques
TODO: port to OWL API
Interaction dbs / binding

[Term]
id: GO:0043184
name: vascular endothelial growth factor receptor 2 binding
intersection_of: GO:0005488 ! binding
intersection_of: results_in_binding_of PRO:000002112 ! VEGFR 2

Implementation: standard reasoning techniques
TODO: port to OWL API
Increasing expressivity

- Current
 - col16
 - other ontologies
 - gene product targets – “mini pathway” annotations
 - col17
- Increasing coverage of expressive annotations
 - pull automatically from pathway databases
- Relationship between col16 and LEGO
- Integral_to qualifier
- Still to do
 - Automatically deepening annotations
 - standard reasoning technology
 - Using col16 in term enrichment
Annotation Tools

• Current
 – PAINT
 • phylogenetic inference
 • desktop application
 – Individual MOD annotation interfaces

• Future
 – Web PAINT
 – Common Web Annotation Interface “IndiGO”
 • curators and community
 • reuse: p2go, textpresso, phenote, ..
Reference Genome Tracking and Reporting

• Database Reports
• More pro-active use of wikis and collaborative tools
 – integrate GONUTs and GO Wiki
 – Sourceforge replacement
Derived Metrics

• How do evaluate how we’re doing?
 • Systematically evaluate

• Example
 – Does integrating with pathway dbs help?
 • Let’s take: Genes down-regulated in Alzheimer’s

<table>
<thead>
<tr>
<th></th>
<th>GOA without R</th>
<th>GOA with R (enhanced)</th>
</tr>
</thead>
<tbody>
<tr>
<td>oxidative phosphorylation</td>
<td>7×10^{-29}</td>
<td>1.2×10^{-44}</td>
</tr>
<tr>
<td>regulation of insulin secretion</td>
<td>0.72</td>
<td>4×10^{-46}</td>
</tr>
</tbody>
</table>
AmiGO 1.8 Progress

• Available on labs
 – improved lucene-based search
 – web services for visualization
 – advanced queries
 • N-matrix (see Val’s talk from GO annot camp)
 – new term pages

AmiGO and QuickGO

• Overlapping core functionality
 – duplicate code
 – wasted effort

• Current strategy
 – Loose coupling
 – AmiGO labs now shows quickgo graphs

• Future strategy
 – tighter integration
 – shared java codebase
GO Tools

• We list >50 on website
 – We have started capturing more detailed metadata
• Lots of effort for users
• Requires bioinformatics expertise to build workflows
 – ID mapping
 – mapping using orthologs
 – mapping using ext2go
 – building and using slims for analyses
• Current progress:
 – shopping carts in AmiGO
GO Galaxy Environment

http://berkeleybop.org/galaxy
Database and Infrastructure

- Future of GO database
- Deployment and virtualization
Future of GO Database

- Currently used for many different purposes:
 - underpins AmiGO
 - underpins PAINT
 - SQL Queries for Annotation QC checks
 - advanced user GOOSE queries
 - mirrored internally by a number of groups
Future of GO Database

• Currently used for many different purposes:
 – underpins AmiGO
 – underpins PAINT
 – SQL Queries for Annotation QC checks
 – advanced user GOOSE queries
 – mirrored internally by a number of groups

• ...But there are problems:
 – designed in 1999
 – inefficient for querying and bulkloading
 – mysql
 – outdated perl middleware
Alternatives to RDBMSs

• Text indexing engines
 – Apache Lucene/SOLR

• Key-value databases
 – Google BigTable

• RDF Triplestores
 – ontology-aware SPARQL queries

• In-memory querying
 – OWL API

• Custom indexing
 – QuickGO
Database Strategy

• AmiGO queries
 – Use Lucene/SOLR
 – In-memory ontology querying

• Other GO functions
 – Resdesign/simplify relational schema
 • (ARRA)

• In parallel
 – Leverage external RDF stores
 • Neurocommons
Virtualization and the cloud

• Current deployment cycle is inefficient
• Solution: virtual machine (VM) images
 – database(s)
 – amigo/quickgo
 – GO annotation tools + galaxy server
 – piggyback off existing genomics VM
• Can be easily deployed on a variety of servers or on the cloud
Summary

• Key areas
 – ontology and annotation automation and integration

• Increased efficiency
 – reuse
 • OWL API
 – collaborate
 – lightweight