Functional Context Matters: Building and Applying a New Dictionary for Human Development

Donna K. Slonim

Dept. of Computer Science, Tufts University

Dept. of Integrative Physiology and Pathobiology, Tufts
University School of Medicine

Genetics Faculty, Sackler School of Graduate
Biomedical Sciences

Bioinformatics for Human Development

- Better understand normal development
- Diagnose developmental abnormalities
- Suggest novel therapies
- Discover developmental implications for adult disease

Functional Analysis of Prenatal Gene Expression: Fetal RNA in Maternal Blood

Maron, et al., J Clin Invest 2007

157 genes upregulated in pregnant moms and their babies, vs. postpartum moms.

Automated functional analysis hinted at fetal origin

Evidence from manual review was much stronger. Why?

Using the Wrong Dictionary

We need to create our own dictionary.

DFLAT Developmental Functional Annotation at Tufts

Wick, et al., BMC Bioinfo 2014

keywords, genes, developmental processes

Manual curation

Literature-derived annotation

Developmental Functional Annotation at Tufts

Wick, et al., BMC Bioinfo 2014

GO:0032502 developmental process GO:0048856 GO:0044767 anatomical structure single-organism development developmental process GO:0009653 GO:0003006 anatomical structure developmental morphogenesis process involved in

Mouse developmental genes

reproduction

Total: 13,344 new annotations

Ortholog-derived annotation

DFLAT's impact on expression analysis

GSEA with GO Biological Process terms
Significant gene sets gained/lost with DFLAT:

Differential expression in gene sets

Differences in expression may be subtle for each gene.

But, if entire set shows consistent changes, we can still detect this.

GSEA software from Broad Institute does this (as do others)

But, need to know gene sets ahead of time.

Fetal RNA just before birth: New results with DFLAT

"I'm getting ready to feed"

"I will see something soon"

"I am going to have to fight bacteria on my own"

"I am going to be challenged by new odors"

"My bones and muscles are still developing"

"My nervous system is getting ready for me to face the world"

"I'm going to need to breathe for myself"

"Sounds and speech are going to be important to me"

DFLAT's impact on expression analysis

Verified new functions significant (p < 0.05) in:

Trisomy 21 Trisomy 18

Applying the Dictionary

Characterizing Individual Developmental Anomalies

Expression Data Analysis

Training Data

	S	1		S	2					sl	1	
g1	4	2 3	3	3	32	91	4	32	1	2	1 2	3
g ₂	2	3 2	22	1	7	3	32	2 1	5	43	2	3
		100	8.0		231	.3	4	2.3	32	5	21	.3
	3	3 2	7	2	7 7	3	4	2 3	1	1	3	3
	2	3 2	22	1	7	3	32	2 1	5	43	2	3
		142	2.1		91	32	40	8 (3	09	1	3
gN	3	3 2	7	2	7	3	6	5 4	. 3	4	3 2	1

The Challenge of Rare Samples

Anomaly Detection

Computational field of identifying unusual data points in multi-dimensional space

Training data: normal examples only

Many methods; best include:

1-class SVMs

Local Outlier Factor (LOF)

But distance-based methods struggle in high-dimensional spaces

Feature Regression and Classification (FRaC)

Noto, et al., Intl Conf Data Min 2010

Combine Predictors via Information Theory

	Reliability (on Training Data)	Error (on Query Data)
1	50% accuracy	misclassified
2	90% accuracy	correct
3	90% accuracy	misclassified

bits of

information

Surprisal = $-\log_2(p)$

Evaluating Anomaly Detection

Create data sets from classification tasks:

FRaC Wins on Machine Learning Data

47 UCI data sets

0.6 1-Class SVM 34 —FRaC

Noto, et al., Data Min Knowl Disc 2012

Much more robust to irrelevant features

Why Genomic Problems are Harder

Dimensions

Irrelevant genes

Interpretation?

...which gene sets are anomalous?

CSAX: Characterizing Systematic Anomalies in eXpression Data

Main Idea:

- Rank genes by FRaC surprisal
- Find enriched functions in ranked list of genes (GSEA)

But this "FRaC + enrichment" is not enough...

Bare minimum numbers of "normal" examples

Complex, heterogeneous high-dimensional domains

Add cross-validation:

Bare minimum numbers of "normal" examples

Add cross-validation:

Bare minimum numbers of "normal" examples

Add cross-validation:

Bare minimum numbers of "normal" examples

Complex, heterogeneous high-dimensional domains

Solution: bagging and weighting

CSAX: Characterizing Systematic Anomalies in expression Data

CSAX: Characterizing Systematic Anomalies in eXpression Data

CSAX: Characterizing Systematic Anomalies in eXpression Data

Outlier Detection for Expression Data

Example: impact of maternal obesity

Amniotic fluid from 17-week fetuses

Normal = mom has healthy BMI

Maternal obesity known to affect neuronal development

Top CSAX pathways (# individuals):

- -axonogenesis (2)
- -oxidative stress and inflammation (2)
- -DNA damage response (1)

Example: Blood from Preterm Infants

Blood from 100 infants born preterm

"Normal" = no complications during hospital stay

Complications include:

BPD (pulmonary)

ROP (vision)

PVL (brain)

Pietrzky, et al., PLoS One 2013

Example: Blood from Preterm Infants

CSAX:

14 with periventricular leukomalacia (PVL) calcium signaling / homeostasis (in 6 of them)

Conclusions

Gene annotation focused on relevant context helps!

Using gene sets derived from this annotation, we can characterize individual anomalies.

Progress toward precision medicine: what does it mean when n=1?

Acknowledgements

Slonim Lab

Jisoo Park

Michael Pietras

Heather Wick

Keith Noto

Saeed Majidi

Craig Fournier

Michael Sackman

Huy Ngu

Tufts CS

Carla Brodley

Women and Infants' Hospital:

Umadevi Tantravahi

Jackson Laboratory

Judy Blake

David Hill

Harold Drabkin

Tufts Medical Center

Diana Bianchi

Vidya Iyer

Jaclyn Ruggiero

Betsabee Castillo

Andrea Edlow

Jill Maron

Faycal Guedj

Janet Cowan

Zina Jarrah

Phil Hinds

Broad Institute

Jill Mesirov

Arthur Liberzon

Pablo Tamayo

George Steinhardt

Aravind Subramanian

<u>EBI</u>

Emily Dimmer

Rachael Huntley

Rolf Apweiler

Funding:

NIH R01HD058880

NIH R01HD076140

