$\square \longleftarrow \square$ programmed cell death $\square \longleftarrow$ II apoptosis

T 4 P activation of caspase activity
\longleftarrow - activation of pro-apoptotic gene products
$\square \longleftarrow \square$ anoikis
$\square \longleftarrow \square$ apoptosis in bone marrow
$\longleftarrow \square$ apoptosis in response to endoplasmic reticulum stress
\longleftarrow - 1 apoptosis involved in luteolysis
$\square \longleftarrow \square$ apoptosis involved in morphogenesis
$\square \longleftarrow-P$ apoptotic mitochondrial changes
$\square \longleftarrow$ P cellular component disassembly involved in apoptosis
$\square \longleftarrow \square$ endothelial cell apoptosis
$\square \longleftarrow \square$ fibroblast apoptosis

+ - g glial cell apoptosis
\longleftarrow I inflammatory cell apoptosis
$\square \longleftarrow \square$ leukocyte apoptosis
$\square \longleftarrow \square$ muscle cell apoptosis
$\square \longleftarrow$ Il myeloid cell apoptosis
$\square \longleftarrow \square$ negative regulation of apoptosis
$\square \longleftarrow \square$ anti-apoptosis
$\longleftarrow \sqrt{R}$ negative regulation of anti-apoptosis
\longleftarrow \& positive regulation of anti-apoptosis
$\square \longleftarrow \mathbf{R}$ regulation of anti-apoptosis
$\square \longleftarrow \square$ regulation of survival gene product expression
- P canonical Wnt receptor signaling pathway involved in negative regulation of apoptosis
$\square \longleftarrow \square$ negative regulation by symbiont of host apoptosis
$\square \longleftarrow \square$ negative regulation of apoptosis in bone marrow
$\longleftarrow \square$ negative regulation of endothelial cell apoptosis
\longleftarrow II negative regulation of fibroblast apoptosis
$\longleftarrow \square$ negative regulation of glial cell apoptosis
$\square \longleftarrow \square$ negative regulation of leukocyte apoptosis
$\square \longleftarrow \square$ negative regulation of mesenchymal stem cell apoptosis involved in nephron morphogenesis
$\square \longleftarrow \square$ negative regulation of muscle cell apoptosis
$\square \longleftarrow \square$ negative regulation of myeloid cell apoptosis
$\square \longleftarrow \square$ negative regulation of neuron apoptosis
$\longleftarrow \square$ negative regulation of nurse cell apoptosis
$\square \longleftarrow \square$ neuron apoptosis
$\square \longleftarrow \square$ nurse cell apoptosis
\longleftarrow - 1 ovarian follicle atresia
- P phosphatidylserine exposure on apoptotic cell surface
$\square \longleftarrow$ R positive regulation of apoptosis
$\square \longleftarrow \mathbf{R}$ regulation of apoptosis
\longleftarrow I transformed cell apoptosis
T — i virus-infected cell apoptosis
$\square \longleftarrow \square$ autophagic cell death
\longleftarrow Il cornification
$\square \longleftarrow \square 1$ developmental programmed cell death
T — il host programmed cell death induced by symbiont
\longleftarrow I hydrogen peroxide-mediated programmed cell death
$\longleftarrow \square$ mitotic catastrophe
$\square \longleftarrow$ negative regulation of programmed cell death
$\square \longleftarrow \mathbb{R}$ positive regulation of programmed cell death
\longleftarrow II pyroptosis
$\pm \longleftarrow \mathbf{R}$ regulation of programmed cell death
\longleftarrow I singlet oxygen-mediated programmed cell death
+ $\leftarrow \mathbf{R}$ regulation of cell death

