Reference genome project ## Ref genome project overview - Goal: provide comprehensive annotations for 12 species - Better annotations: each model organism has unique strengths for probing gene function, and bringing this information together helps to interpret experimental results, which improves the accuracy and consistency of annotations. - More annotations: homology relationships allow accurate inference of functions for genes that have not been characterized experimentally - Improvements in the Gene Ontology: cross-organism discussion about annotations frequently leads to new terms being added to the Gene Ontology. Web presence: http://geneontology.org/GO.refgenome.shtml?all ## **Annotation targets** - 2006-2007: Disease genes from OMIM - 2007-2009: added three categories, in addition to (1) diseases: (2) 'hot genes', (3) metabolic pathways, (4) conserved but uncharacterized genes. - 2009 onward: text-book style projects - Nov 09 March 10: lung branching morphogenesis - July October 10: wnt signaling pathway ## Establishing families - 2006-2008: Mix of YOGI, OrthoMCL, TreeFam, In paranoid – family membership established by MOD curators - May 2008- October 2009: PPOD - November 2009 onwards: Panther # Defining the Reference genome biocuration projects Co-current annotation of biological 'modules' - Annotation consistency, guidelines, and quality control - Ontology development - Enable propagation of annotations via PAINT - Publicize the Reference Genome initiative - Provide opportunities to involve experts # RefG annotation projects: Requirements & Priorities - Impact on human biomedical research - Each project should be feasible in 3-4 months; Split into several subprojects if necessary - Projects will be publicized on the GO website and as publications - Encourage external collaborations ## Factors in prioritization - Impact and significance of the pathway: - How conserved the process is - Has implications in vertebrate biology - Things that happen within a single cell (molecular) - Practical aspects that will help the success of the project: - Need a 'project leader' that devote the time to drive it forward - There are external experts available and willing to provide feedback ## Annotation targets: numbers - ~ 450 families - ~ 8,000 proteins from ref genome species - 11 families (that include annotations for up to 42 species) # Current project: canonical Wnt signalling (July – October 2010) - Focus on gene products specific to the pathway. - Therefore limit to specific Panther subfamilies - Limit of 2 weeks for the annotation of each Panther family - Aim is to comprehensively annotate the gene products as opposed to completely annotate. This is especially relevant for MODs with large volumes of literature - PAINT curation 2 weeks after annotation period ends - Allows time for annotations to filter through to PAINT database - Also allows time for recently requested terms to be annotated - MODs review PAINT annotations - Curators to look at PAINT annotations soon after they are available, whilst the initial literature review is still in mind ## Wnt Target families: Annotation Progress | | | Cluster | Last Annotated | Members | Refere | nce Ge | nome | Distrib | ution | | | | | | | | |-------------|------------|-----------|----------------|---------|-------------|-------------|-------------|-------------|-------------|------------|-----------------|-------------|-------------|-----------|------------|--------------| | | LEF1 | PTHR10373 | 2010-04-25 | 31 | 0
ARATH | 1
CAEEL | 4
DANRE | DICDI | 1
DROME | O
ECOLI | З | 4
HUMAN | 4
MOUSE | 6
RAT | O
YEAST | SCHRO | | | LRP | PTHR10529 | 2010-04-27 | 149 | O
ARATH | 14
CAEEL | 10
DANRE | 13
DICDI | 16
DROME | O
ECOLI | 14
CHICK | 19
HUMAN | 17
MOUSE | 15
RAT | O
YEAST | O
SC HPO | | | Axin | PTHR10845 | 2010-04-25 | 169 | 1
ARATH | 13
CAEEL | 21
DANRE | 4
DICDI | 5
DROME | O
ECOLI | 23
CHICK | 23
HUMAN | 22
MOUSE | 21
RAT | 1
YEAST | 1
SCHPO | | Dishevelled | | PTHR10878 | 2010-04-25 | 24 | O
ARATH | 2
CAEEL | 3
DANRE | ODICDI | 1
DROME | O
ECOLI | 2
CHICK | 4
HUMAN | 4
MOUSE | 3
RAT | O
YEAST | O
SCHIO | | | frizzled | PTHR11309 | 2010-04-25 | 119 | O
ARATH | 5
CAEEL | 17
DANRE | ODICDI | 5
DROME | O
ECOLI | 12
CHICK | 16
HUMAN | 16
MOUSE | 13
RAT | O
YEAST | O
SCHRO | | | wnt | PTHR12027 | 2010-04-27 | 135 | O
ARATH | 5
CAEEL | 19
DANRE | O
DICDI | 7
DROME | O
ECOLI | 15 CHICK | 19
HUMAN | 19
MOUSE | 19
RAT | 0
YEAST | O
SC HIXT | | | APC | PTHR12607 | 2010-04-25 | 11 | 0
ARATH | O
CAEEL | 1
DANRE | O
DIC DI | 2
DROME | O
ECOLI | 1
CHICK | 2
HUMAN | 2
MOUSE | 2
RAT | O
YEAST | O
SCHIO | | be | ta-catenin | PTHR23315 | 2010-04-25 | 75 | 24
ARATH | 3
CAEEL | 3
DANRE | O
DICDI | 3
DROME | O
ECOLI | 2
CHICK | 6
HUMAN | 5
MOUSE | 4
RAT | 1
YEAST | 1
SCHPO | http://amigo-sven.princeton.edu/cgi-bin/amigo/phylotree?mode=index&id= PTHR10373+ PTHR12607+ PTHR23315+ PTHR10529+ PTHR10845+ PTHR10878+ PTHR11309+ PTHR12027 Legend: DONE DONE by majority of MODs IN PROGRESS ### Communication - Monthly conference calls since June 2007 - Minutes are on GO Wiki - Email list - GAF files are on the CVS repository - Source forge tracker - Questions/suggestion from tree annotations (from the evidence.txt file) are on the GOC wiki under http://wiki.geneontology.org/index.php/PTHR##### (continued on next slides) ### --- Communication --- Source forge tracker (not being used anymore) ## --- Communication --- • Wiki, see example: http://wiki.geneontology.org/index.php/PTHR12027 | Questions for MOD curators | [edit] | |---|------------------------| | Molecular Function | [edit] | | Worm | [edit] | | Question:GO:0004871 "signal transducer activity" has the comment "Ligands do NOT have the molecular transducer activity'." Can you please clarify the 4871 IGI on wnt-2? | cular function 'signal | | Curator answer: I removed the manual IGI annotation to signal transducer activity, but also notice
same annotation in WB as an IEA via the InterPro2GO mapping. This annotation also gets applied
elegans Wnts via the same mapping. | to the other C. | | InterPro:IPR005816 Secreted growth factor Wnt protein > GO:signal transducer activity; GO:00046 | 871 | | There are some others in the InterPro2GO mappings file that should also be checked: | | | InterPro:IPR005817 Wnt superfamily > GO:signal transducer activity; GO:0004871 InterPro:IPR009139 Wnt-1 protein > GO:signal transducer activity; GO:0004871 (and many other share this mapping) I'll submit this as a SourceForge item. | Wnt-number proteins | | Kimberly | | | Mouse | [edit] | | • Question: Please verify the Wnt9a GO:0043028 "caspase regulator activity" annotation. Is this an act of Wnt9a or just a downstream effect? | ual molecular function | | Curator answer: | | | The function annotation to GO:0043028 was deleted after a MGI group discussion. | | | Cellular Component | [edit] | | All organisms | [edit] | | All: There are multiple annotations to "plasma membrane." Do you agree that this is valid for a ligand? | • | # Ref Genome& Ontology development: Source forge requests - 386 reference genome issues - 25 issues open 357 done - For 2010: ref genome issues are about 10% of all SF term requests ## Ref Genome & Annotation Coordination - Electronic annotation jamborees twice / year - Annotation camp in Geneva June 2010 - 70 attendees: 23 GOC, 40 Swiss-Prot, 10 remote - Topics: - protein binding - protein complexes - response to - regulates - downstream events ### PAINT: ## Protein Annotation Inferencing Tool - curation tool for annotating by phylogenetic relationships used by the reference genome project. - Since 2009 a large part of the effort of the reference genome group is the development of the PAINT tool, which allows to visualize annotations and annotate multiple sequences in a single step. ### Annotation tracker tool - Sven Heinicke, Chris Mungall, Seth Carbon - Goal: help keep track of progress and prioritize ## Data availability: files ### GAF files: http://cvsweb.geneontology.org/cgi-bin/cvsweb.cgi/go/gene-associations/submission/paint/#dirlist http://cvsweb.geneontology.org/cgi-bin/cvsweb.cgi/go/gene-associations/submission/#dirlist #### By protein family #### By species ## Contents of the Protein family directory: - Files to re-load in PAINT - GAF file - Evidence.txt file with description of the tree annotation, comments and questions | File | Rev. | Age | Author | Last log entry | |----------------------|------------|---------|--------|-------------------------| | Parent Directory | | | | | | PTHR12027.save.attr | <u>1.1</u> | 2 weeks | elee | Added family PTHR12027. | | PTHR12027.save.gaf | <u>1.1</u> | 2 weeks | elee | Added family PTHR12027. | | PTHR12027.save.msa | <u>1.1</u> | 2 weeks | elee | Added family PTHR12027. | | PTHR12027.save.paint | 1.1 | 2 weeks | elee | Added family PTHR12027. | | PTHR12027.save.sfan | 1.1 | 2 weeks | elee | Added family PTHR12027. | | PTHR12027.save.tree | 1.1 | 2 weeks | elee | Added family PTHR12027. | | PTHR12027.save.txt | <u>1.1</u> | 2 weeks | elee | Added family PTHR12027. | | PTHR12027.save.wts | 1.1 | 2 weeks | elee | Added family PTHR12027. | ## Data availability: web view in AmiGO http://amigo.geneontology.org/cgi-bin/amigo/amigo?mode=homolset_summary | A B C D E F G H I J K L M N O P Q R S T U Z W X Y Z | | | | | | | | | | | |---|--------------|-------------|---------------|------------|------------|--|--|--|--|--| | A | | | | | | | | | | | | Gene Family | H. sapiens | M. musculus | R. norvegicus | G. gallus | D. rerio | | | | | | | AATF
graphical view:
static interactive | AATF EXP | Aatf EXP | Aatf EXP | AATF OTHER | aatf OTHER | | | | | | | ABHD1
graphical view:
static interactive | ABHD1 OTHER | Abhd1 OTHER | Abhd1 OTHER | | | | | | | | | ABHD11
graphical view:
static interactive | ABHD11 OTHER | Abhd11 EXP | Abhd11 OTHER | | abhd11 OTH | | | | | | | ABHD3
graphical view:
static interactive | ABHD3 OTHER | Abhd3 OTHER | Abhd3 OTHER | | abhd3 OTHE | | | | | | ## Data availability in MODs - SGD, MGI, UniProt are uploading GAF files - Pombe : next week - QuickGO has a Ref Genome filter http://www.ebi.ac.uk/QuickGO/GAnnotation?&protein=ReferenceGenome dictyBase, wormbase, ZFIN are in the process of adapting their tools ### PAINT annotations in SGD - Have a loading script to load annotations - PANTHR_ID in the 'with' column - loading is easier - Display is simple ## PAINT annotations for FHK1 @ SGD #### FKH1 Computational***: Jump to: top | Manually curated | High-throughput Molecular Function | Biological Process | Cellular Component | Computational Molecular Function | | | | | | | | |--|---|---|-------------|--|--|--|--| | Annotation(s) | Evidence | Reference(s) | Assigned By | | | | | | DNA binding | IEA: Inferred from Electronic
Annotation
with EBI:KW-0238
Last updated 2010-04-20 | GOA curators (2000) Gene Ontology annotation based on Swiss-Prot keyword mapping. **GOPaper** Access Full Text** | UniProtKB | | | | | | double-stranded DNA binding | ISS: Inferred from Sequence or
structural Similarity
with RGD:2808, RGD:621715,
PANTHER:PTHR11829_AN0,
RGD:621723, RGD:2807
Last updated 2010-06-15 | Gaudet P, et al. (2010) Annotation inferences using phylogenetic trees () Access Full Text | RefGenome | | | | | | promoter binding | ISS: Inferred from Sequence or
structural Similarity
with MGI:1347473, MGI:1347487,
PANTHER:PTHR11829_ANO,
MGI:1347470, MGI:1096329
Last updated 2010-06-15 | Gaudet P, et al. (2010) Annotation inferences using phylogenetic trees () SGD Paper Full Text | RefGenome | | | | | | RNA polymerase II
transcription factor
activity, enhancer
binding | ISS: Inferred from Sequence or
structural Similarity
with MGI:1347466,
FLYBASE:FBgn0045759,
MGI:1347476,
PANTHER:PTHR11829_AN0,
MGI:1891436, MGI:1914004,
MGI:1347481
Last updated 2010-06-15 | Gaudet P, et al. (2010) Annotation inferences using phylogenetic trees () Access Full Text | RefGenome | | | | | ## MGI # Publicizing the reference genome project - Newsletters: GO, wormbase, FlyBase, ZFIN - MODs websites: - GOA http://www.ebi.ac.uk/GOA/RGI/index.html - BHF-UCL http://www.ucl.ac.uk/silva/cardiovasculargeneontology - TAIR: http://www.arabidopsis.org/portals/genAnnotation/functional_annotation/reference.jsp - pombe - Search: expanding our search capabilities so that an User would be able to use search terms like human disease names or human genes ## Publications/communications - PLoS Computational Biology 5(7):e1000431. PMID: 19578431 - A note about the reference genome project was published in the GO news site: http://go.berkeleybop.org/news4go/node/27 - Talks: - 3rd Biocurator meeting, Berlin, April 09 (Gaudet) - Quest for ortholog meeting, Hinxton, July 09 (Gaudet) - Genome Informatics conference, Cold Spring Harbor, NY, October 09 (Thomas) - Posters - 2nd Biocurator meeting, San Jose, CA, October 09 (Tweedie) - Dicty meeting, Estes Park, CO, September 09 (Gaudet) - Genome Informatics conference, Cold Spring Harbor, NY, October 09 (Livstone) - ISMB meeting, Boston, MA, July 10 (Gaudet) ### Next 6-12 months - (PAINT: no full time developer) - Annotation tracker (see Sven) - MOD curation: open for discussion http://wiki.geneontology.org/index.php/RefG annotation priorities - Protein family annotation: 1-2/week - Writing papers ## Kara: Princeton progress report # Grant: ideas for reference genome group - Continue 'project' approach but prioritize better - -- poorly covered areas of the ontology - -- poorly annotated areas - -- be more pro-active about collaborations - Reach out to researchers for input in ontology and annotation - Uncouple tree annotation from MOD curation # Aim 1: Literature Curation and Annotation - Develop literature annotation standards and best practices guidelines - Establish ongoing reviews and quality assessments of the reference annotations, using both manual and automated approaches - Amend the ontology as needed # Aim 2: Phylogenetic Curation and Annotation - Develop phylogenetic annotation standards and best practices guidelines. - Increase the efficiency of phylogenetic curation by providing closer integration with literature-based curation. - Extend the relevant software used by curators in propagating reference genome annotations to enhance efficiency and accessibility (Web-PAINT, database, web QC services). - Develop the infrastructure required for the ongoing updates to the phylogenetic-based protein families. # Aim 3: Extend the GO into major new communities - Establish partnerships with researchers working in major human organ/cellular systems for comprehensive annotation efforts on specific "text-book" style modules. This approach offers a finite list of topics to be covered, and gives community experts a sense of ownership. - Establish partnerships with bacterial research communities, including the metagenomic communities, and work with them to enable their use of GO