### Basic problem formulation

- We have information about gene function from experiments in diverse organisms
- How do we integrate information about related genes to
  - Get a fuller picture of gene function
  - Annotate genes that have not been fully explored experimentally

## Example: Annotations for human and mouse genes are largely complementary

| Aspect                | GO ID      | GO term                                                                  | # mouse<br>annotations | # human<br>annotations | P-value |
|-----------------------|------------|--------------------------------------------------------------------------|------------------------|------------------------|---------|
| molecular<br>function | GO:0005515 | protein binding                                                          | 6151                   | 12318                  | <10-100 |
| molecular<br>function | GO:0016462 | pyrophosphatase<br>activity                                              | 109                    | 240                    | <10-50  |
| molecular<br>function | GO:0003682 | chromatin<br>binding                                                     | 204                    | 68                     | <10-30  |
| molecular<br>function | GO:0005261 | cation channel activity                                                  | 187                    | 75                     | <10-20  |
| molecular<br>function | GO:0003700 | sequence-<br>specific DNA<br>binding<br>transcription<br>factor activity | 427                    | 252                    | <10-10  |
| biological<br>process | GO:0032502 | developmental process                                                    | 22114                  | 3197                   | <10-100 |
| biological<br>process | GO:0032501 | multicellular<br>organismal<br>process                                   | 15070                  | 2987                   | <10-100 |
| biological<br>process | GO:0030154 | cell<br>differentiation                                                  | 5390                   | 1035                   | <10-100 |
| biological<br>process | GO:0043412 | macromolecule<br>modification                                            | 1438                   | 2277                   | <10-100 |
| biological<br>process | GO:0044248 | cellular<br>catabolic<br>process                                         | 523                    | 904                    | <10-100 |
| biological<br>process | GO:0051276 | chromosome<br>organization                                               | 338                    | 634                    | <10-100 |

### "Transitive annotation"

- "ISS" GO evidence code: Inference from sequence similarity
- A class of database search algorithm (e.g. BLAST) has become a metaphor
  - Implies "genes have similar functions because they have similar sequences"





### What is transitive annotation?

- More properly, transitive annotation of function is inheritance!
  - Two sequences are similar **because** they are homologous (at least for relatively long, non-repetitive sequences, i.e. almost all genes)
  - related genes have a common function because their common ancestor had that function, which was inherited by its descendants
  - not just an inference about one gene. It is also making inferences about
    - The most recent common ancestor (MRCA)
    - Continuous inheritance since the MRCA
    - Potential inheritance by other descendants of the MRCA

      Gene in Mouse

      Function X

      Gene in Human

      Function X

      Gene in Opisthokont MRCA

      Gene in Zebrafish

      Function X

      Gene in Function X

      Function X

      Function X

Yeast

## Transitive annotation using annotated ancestral genes

- For the Reference Genome Project, we want to be explicit about evolutionary inferences
  - Use "evolutionary reasoning": descendants generally share a character because they inherited it from a common ancestor
    - Infer the function of an ancestor from knowledge about its descendants
    - Infer the function of uncharacterized descendants from inference about its ancestor
  - Create a model of evolution of function for every gene family
    - Annotation of a tree node means "this function evolved on the branch prior to this node"
    - A NOT annotation of a tree node means "this ancestral function was lost on the branch prior to this node"

### Phylogenetic annotation pilot

| Genome          | # genes<br>in pilot | % genome in pilot | # New annotations from pilot | New annotations per gene | Existing annotations per gene | Projected fold increase from inferences |
|-----------------|---------------------|-------------------|------------------------------|--------------------------|-------------------------------|-----------------------------------------|
| Human           | 283                 | 1.42              | 2736                         | 9.67                     | 5.34                          | 1.81                                    |
| Mouse           | 277                 | 1.06              | 2074                         | 7.49                     | 3.32                          | 2.25                                    |
| Zebrafish       | 326                 | 1.53              | 3429                         | 10.52                    | 2.26                          | 4.65                                    |
| D. melanogaster | 123                 | 0.91              | 868                          | 7.06                     | 3.42                          | 2.06                                    |
| C. elegans      | 162                 | 0.81              | 1088                         | 6.72                     | 2.34                          | 2.87                                    |
| S. cerevisiae   | 62                  | 1.06              | 205                          | 3.31                     | 2.5                           | 1.32                                    |
| S. pombe        | 55                  | 1.10              | 279                          | 5.07                     | 2.84                          | 1.79                                    |
| D. discoideum   | 105                 | 0.84              | 495                          | 4.71                     | 0.76                          | 6.20                                    |
| A. thaliana     | 168                 | 0.62              | 627                          | 3.73                     | 1.11                          | 3.36                                    |
| E. coli         | 27                  | 0.65              | 39                           | 1.44                     | 0.89                          | 1.62                                    |

All annotations, including curator notes, available at pantree.org

## Protein families and function evolution: basics

### Protein families

- Arise from copying and divergence
  - A tree is a natural way to represent this (Darwin)
- A family derives from a single common ancestor, and members retain ("conserve") sequence similarity due to functional constraint
- Proteins are modular: part or all of a protein may be copied and conserved, but a minimum functional unit must remain (a "domain")

# Representing evolution of related genes

- Start with Darwin's basic model:
  - Copying
    - An ancestral population splits into two separate populations
    - Each population is nearly identical at first
  - Divergence
    - Each population (copy) changes independently over generations
      - NATURAL SELECTION: adaptation to different environment



# Representing evolution of related genes

- "Gene families"
- Add detail from population genetics/molecular evolution to apply to genes
  - Copying
    - An ancestral species splits into two separate species
      - SPECIATION
    - A gene is duplicated in one population and subsequently inherited
      - DUPLICATION
  - Divergence
    - Each copy (gene sequence) changes independently over generations
      - NATURAL SELECTION: sequence substitutions to adapt to new function/ role
      - NEUTRAL DRIFT: accumulation of "neutral" substitutions

...AVSNPDE... ...AVSQPDE...
...AVSNPDE... ...AVSNPDE... ...AVSNPDD...

## A gene tree



- Branch lengths: rate of sequence evolution
  - For neutral changes this can often act as a "molecular clock"
  - Non-neutral changes will speed up the rate of evolution

## How does this relate to gene function?

#### Copying

- Speciation: one gene in each genome; two different species/genomes
- Gene duplication: two copies in each genome with redundant function

#### Divergence

- Both copies begin with same function so are likely to retain at least some aspects of that ancestral function
- Divergence more likely for gene duplication than speciation
  - · Extra gene free from inherited functional constraints



# Gene duplication and functional novelty

- · "Neofunctionalization" model
  - One copy retains ancestral function
  - One copy adapts to new function
    - More diverged copy often recognizable as having larger branch length
- "Subfunctionalization" model
  - Ancestral gene has at least two functions/ specificities
  - Each copy adapts to "specialize" in a subset of the ancestral functions

## Homology inference in a tree

inheritance and divergence of function



### Homology inference in a tree

inheritance and divergence of function



NOT "methionine metabolic process" (b.p.)?

### Homology inference in a tree

inheritance and divergence of function



- Experimental knowledge (GO annotations from literature)
- 3. Organism-specific biological knowledge (curators)

## Orthologs and paralogs

- The term "Orthologs" is often used to denote "the same gene" in different organisms but this is not techically correct, and can lead to confusion
- Defined by J. Fitch (Syst Zool 19:99, 1970)
- Orthologs share a MRCA immediately preceding a speciation event
  - i.e. they can be traced to a single gene in the most recent common ancestor population/species
- Paralogs share a MRCA immediately preceding a gene duplication event
  - i.e. they can be traced to a gene duplication event in the most recent common ancestor population/species, and can be traced to distinct ancestral genes in that species