GO Software Group - Progress and Next 5 years

working more efficiently for you

Theme

- 2000-2010
 - "wild west"
 - home-grown formats and tools
 - development of de-novo software

- 2010-2020
 - mature phase
 - 3rd party tools
 - Software group as integrators
 - Increased Automation

Outline

- Support for Ontology Development
 - TermGenie
 - Leverage OWL tools
- Annotation and Reference Genome Support
 - QC and Rule Engine
 - Expressivity and automatic integration
 - Annotation Tools
- Web Presence
 - AmiGO and QuickGO
 - Galaxy
- Infrastructure and GO Database
 - Database Overhaul
 - Virtualization and the cloud

Ontology Development

First Decade

- Large monolithic, manually constructed graph
- Sourceforge workflow
- All ontology changes through editor + OboEdit

Second Decade

- Modular ontology construction
 - 'outsourcing' to OBO
 - MIREOTing of terms
 - automated classification
- Instant Compositional Terms for Annotators
 - TermGenie
- Reasoner-based QC

Current progress: Ont-Dev

- TermGenie
- Support for MIREOT/isa closure in OboEdit
- More QC checks

Infrastructural changes required to support ontology development

- We have too much dependence on home grown software
 - reasoning, ontology processing and editing
 - poor bus ratio
- Most useful 3rd party ontology development tools assume OWL
 - We will make obo-format1.4 formally correspond to a subset of OWL
 - Write reliable converters
 - Migrate all code to OWL API

Workflow

SWUG Plan: Ont-Dev

- Freeze OE new features
 - maintenance mode
- Prioritize obo/owl conversion
 - allows people to use whichever tool is most appropriate
- Make OE3 a plugin for Protege4
 - port visualization, verification checks
- Migrate existing ont support tools to OWLAPI
 - TermGenie
 - OE Reasoner
 - Ontology QC reports

Annotation support

- Automated QC and inference
- Automatic integration with external databases
- Support increased expressivity
- Annotation Tools

Automatic QC and inference

- Existing checks and inferences:
 - Taxon constraints
 - paper accepted for BMC bioinformatics
 - Materializing F->P annotations
 - Ad-hoc SQL queries and scripts
- Plan
 - Unified Rule Engine
 - Driven from central rules file
 - Implemented using OWL API

Automatic integration

Automating integration using computable definitions – **pathway databases**

Implementation: standard reasoning techniques

TODO: port to OWL API

Interaction dbs / binding

Implementation: standard reasoning techniques

TODO: port to OWL API

Increasing expressivity

- Current
 - col16
 - other ontologies
 - gene product targets "mini pathway" annotations
 - col17
- Increasing coverage of expressive annotations
 - pull automatically from pathway databases
- Relationship between col16 and LEGO
- Integral_to qualifier
- Still to do
 - Automatically deepening annotations
 - standard reasoning technology
 - Using col16 in term enrichment

Annotation Tools

- Current
 - PAINT
 - phylogenetic inference
 - desktop application
 - Individual MOD annotation interfaces
- Future
 - Web PAINT
 - Common Web Annotation Interface "IndiGO"
 - curators and community
 - reuse: p2go, textpresso, phenote, ...

Reference Genome Tracking and Reporting

- Database Reports
- More pro-active use of wikis and collaborative tools
 - integrate GONUTs and GO Wiki
 - Sourceforge replacement

Derived Metrics

- How do evaluate how we're doing?
 - Systematically evaluate
- Example
 - Does integrating with pathway dbs help?
 - Let's take: Genes down-regulated in Alzheimer's

	GOA without R	GOA with R (enhanced)
oxidative phosophorylation	7 x 10 ⁻²⁹	1.2 x 10 ⁻⁴⁴
regulation of insulin secretion	0.72	4 x 10 ⁻⁴⁶

AmiGO 1.8 Progress

- Available on labs
 - improved lucene-based search
 - web services for visualization
 - advanced queries
 - N-matrix (see Val's talk from GO annot camp)
 - new term pages
 - http://amigo.berkeleybop.org/cgi-bin/amigo/ term details?term=GO:0022008

AmiGO and QuickGO

- Overlapping core functionality
 - duplicate code
 - wasted effort
- Current strategy
 - Loose coupling
 - AmiGO labs now shows quickgo graphs
- Future strategy
 - tighter integration
 - shared java codebase

GO Tools

- We list >50 on website
 - We have started capturing more detailed metadata
- Lots of effort for users
- Requires bioinformatics expertise to build workflows
 - ID mapping
 - mapping using orthologs
 - mapping using ext2go
 - building and using slims for analyses
- Current progress:
 - shopping carts in AmiGO

GO Galaxy Environment

http://berkeleybop.org/galaxy

Database and Infrastucture

- Future of GO database
- Deployment and virtualization

Future of GO Database

Currently used for many different purposes:

- underpins AmiGO
- underpins PAINT
- SQL Queries for Annotation QC checks
- advanced user GOOSE queries
- mirrored internally by a number of groups

Future of GO Database

Currently used for many different purposes:

- underpins AmiGO
- underpins PAINT
- SQL Queries for Annotation QC checks
- advanced user GOOSE queries
- mirrored internally by a number of groups

• ...But there are problems:

- designed in 1999
- inefficient for querying and bulkloading
- mysql
- outdated perl middleware

Alternatives to RDBMSs

- Text indexing engines
 - Apache Lucene/SOLR
- Key-value databases
 - Google BigTable
- RDF Triplestores
 - ontology-aware SPARQL queries
- In-memory querying
 - OWL API
- Custom indexing
 - QuickGO

Database Strategy

- AmiGO queries
 - Use Lucene/SOLR
 - In-memory ontology querying
- Other GO functions
 - Resdesign/simplify relational schema
 - (ARRA)
- In parallel
 - Leverage external RDF stores
 - Neurocommons

Virtualization and the cloud

- Current deployment cycle is inefficient
- Solution: virtual machine (VM) images
 - database(s)
 - amigo/quickgo
 - GO annotation tools + galaxy server
 - piggyback off existing genomics VM
- Can be easily deployed on a variety of servers or on the cloud

Summary

- Key areas
 - ontology and annotation automation and integration
- Increased efficiency
 - reuse
 - OWL API
 - collaborate
 - lightweight